Using System Dynamics to Understand Disruption:

Part 1: Sports over IP – a practical case

Emmanuel BlainMIT

Outline

Two uses of System Dynamics as a tool to capture the dynamic complexity of the environment:

- 1. Sports over IP a practical case (Emmanuel Blain)
- Rationale for use of System Dynamics in the SpoIP framework
- Model: Block representation and Design choices
- Results and prospective
- 2. A general model for Technology and Industry Disruption (Chintan Vaishnav)

The SD standard method

- 1. Problem articulation
- 2. Reference modes ("triggers" in the toolkit)
- 3. Formulation of Dynamic Hypotheses and Causal loop diagrams
- 4. Formulation of the stock & flow model
- 5. Testing
- 6. Policy design and evaluation

From Sternman (2000)

Quick recap of the SpoIP issue

And a lot more complexity added by regulation, historical bonds, etc...

A trans-disciplinary problem

Dealing with the question requires to look more closely at:

- The historical roots of the existing business models
- The existing mechanics in the Sports broadcasting industry
- The technical requirements for "Sports over IP"
- The regulation in vigor (and the trends for the future)

Methodology: System Dynamics

System Dynamics is a tool of choice:

- Multi-disciplinary problem
- Dynamic problem, lots of "What if?" questions
- Behavioral factors are inherently part of the problem
- We do not try to forecast, but study interplays between stakeholders

Aim: study the technological and regulatory conditions under which the market will tip toward a predominance of broadcasters or content owners

SD model for SpoIP

Dynamics of supply and demand in the sports broadcasting market

AND

Competitive model between:

Cable TV

- Operated by legacy carriers.
- Revenues depend on # of viewers, from subscription and ads.
- Incumbent customer base is large, price is low, quality is high

MLB.TV

- Operated by league itself.
- Revenues come from a flat subscription fee
- Entrant customer base is small, price is rather high, but potential for quality and variety is higher than for cable.

Block view of the model

Example: Dynamics of product adoption

What makes a sports viewing package attractive?

Already implemented:

- Price
- Quality of content
- Variety of content

All the implemented factors have the same weight on attractiveness, and are normalized on a scale from 0 to 1.

Not implemented:

- Service uptime (may be an issue for Web TV)
- Blackouts
- Ease of use
- Network effects

Hypotheses for Cable TV:

- Cable is a MATURE technology
 Quality is fixed at 0.5 (quality for Web TV varies from 0 to 1)
- Variety of content only slowly varies as long as the market share is above a threshold (incumbent "rigidity")
- Price depends on the installed base to a certain extent

Attractiveness = Quality * Variety * Normalized price

Hypotheses for Web TV:

- Cable is a fast growing technology
 Quality driven by "Internet-based innovation"
- Variety of content varies quickly as capacity allows it
- Price for now is fixed, and above the current price of cable TV

Results as of today: compared qualities

Results as of today: compared varieties

Results as of today: compared prices

Results as of today: compared attractivenesses

Results as of today: market shares

