CFP Broadband Working Group: Broadband Usage Cost Recovery

Sharon E. Gillett, MIT
John Watlington, France Telecom

January 2005
Residential Broadband Usage Cost Recovery

- A Problem Statement presented as a short White Paper

- The Problem Statement:
 - States assumptions which lead us to believe there is a critical problem
 - Lists commonly proposed solutions, and begins to address their impact on the virtuous cycle

Growing use of Internet applications & services drives demand for enhanced broadband access networks

Investments in broadband access networks support innovation in applications & services
Assumption: Innovation is Good

• Innovation is fostered by improvements in residential broadband access
 – Peer to Peer filesharing
 – BitTorrent
 – Personal publishing (blogging, photo sharing, video sharing)

• The problem is that current pricing and business models may suppress innovation
 – If Access providers don’t profit from improvements in broadband access, they have little incentive to upgrade
 – Flat-rate pricing provides operators with an incentive to minimize usage

• Residential Broadband Cost Recovery is a problem for the entire industry, not just the access providers
Assumption: Services are Interchangeable

• Access providers face competition for most services they provide, including basic transport

• Few services offered by providers cannot be interchanged with those available from third parties
 – Few services are core, or integrally tied to the broadband access service
 – IP number assignment, Routing, and QoS are still core services

• Examples of interchangeable services:
 – Telephony services provided through VoIP
 – Domain Name Service provided through Dynamic DNS
 – Content purchase and download

• Prices not aligned with services used by a user may drive user to competitor
Assumption: The Average User?

- As the access bandwidths increase, it is more difficult to identify an “average user”
 - New applications enabled by increased access bandwidth appear
 - Greater difference between average and high-use users
 - The customer as an aggregator: multiple users and applications sharing a connection

- Technology-based constraints on usage are vanishing
 - High-use users limited by peak rate of access
 - The difference between the peak rate and the average rate is increasing rapidly

- Pricing based on average usage becomes difficult to sustain
Assumption: Different Rates of Growth

- Equipment and backhaul prices are dropping
 - Every doubling of volume drops the price per unit of bandwidth to roughly 80% of previous price

- Demand for bandwidth is increasing
 - Driven by new, broadband-enabled, applications

- But, if the rate of price decline is slower than the rate of bandwidth demand growth
 - Either bandwidth demand is throttled, or traffic-sensitive operating costs increase

![Graph showing Sustainable "stagnation" and Demand unsustainable without increased revenue]
Assumption: Traffic Costs are Significant

- Traffic-sensitive costs are already an important part of a provider’s cost structure

- Mainly due to traffic transferred to/from the general Internet
 - When associated with non-affiliated services, the provider receives no direct revenue

- Overprovisioning doesn’t help

- Questions of Validity
 - Both the internal provisioning and the general Internet costs have a granularity which complicates cost estimates
 - Nature of the information needed to validate assumption
Assumption: Connectivity is the Product

- Access to third party services on the general Internet will continue to be a significant portion of traffic
 - Provider receives no revenue from these services
 - Increasingly difficult to recover costs with flat-rate pricing as volume of this traffic increases
Solutions

• Some commonly proposed solutions and their impact are briefly discussed
 – In particular, those with adverse impact on innovation

• Two approaches to solving the problem (sometimes used together):
 – Solutions that constrain cost
 – Solutions that increase revenue

• This is not a complete list or taxonomy of solutions
Solution: Throttle Traffic

• Throttle bandwidth to constrain growth rate
 – Shaping of aggregate and/or individual user bandwidth

• Implementation Problems
 – How to throttle fairly
 – Over what averaging interval?
 – User irritation

• Inhibits new applications and supresses new usages
 – Negative effects on remainder of value chain
Solution: Reduce Interdomain Traffic

- Re-architect the network to reduce volume of traffic exchanged with other networks
 - Caches or mirrors of popular content within provider network

- Only works for “broadcast” traffic, not communications
 - Popular movie and music downloads, web sites
 - No effect on traffic used for communicating between individuals
Solution: Smooth the demand

- Pricing or Architectural changes which alter the time pattern of traffic
 - Typical traffic shows significant variation over time
 - User interface issues

- Backhaul costs determined by traffic volume at peak usage levels
 - Smooth peak demand into acceptable aggregate levels

Traffic on an OC-192 link
Solution: Subsidizing the connection cost

• Recover cost of increased traffic by charging for another service offered by the access provider
 – Web hosting, email, customer service, etc.
 – Local or affiliated content distribution

• Better alignment between usage costs and prices is critical
 – Inefficient methods for recovering cost will reduce incentive to improve broadband access available for general Internet traffic
 – Incentive to discriminate against general Internet traffic, either through traffic shaping or lack of investment

• Other problems
 – Competition for other services may make this difficult
 – Regulatory constraints
Solution: Charge for Usage

• Recover the cost of increased traffic by charging for it directly

• Higher flat rates not a solution
 – Increasing variance with access capability implies difficulty in establishing one flat rate across all users
 – Providers increasingly face competition for access offering

• User experience issues
 – Like mobile carrier “minutes”, but much harder to quantify

• Other disadvantages
 – Cost of metering usage
 – Usage charges may actually lower costs (through reduced traffic) more than they increase revenues
Solution: Charge Third Parties

- Recover Usage Costs through charging third parties
- Examples currently in use:
 - Local ad insertion in television
 - Call termination fees in telephony
 - Recommended devices
- Improved delivery of content from “affiliated” content providers
- Competition from Edge
 - Adware on personal computers
Validating the Problem Statement

• Desire for pooled database, allowing analysis by researchers to validate assumptions and problem statement
 – But Industry information on user behavior is considered highly confidential

• For now, validation through comments on white paper draft from providers

• Approaches to Solutions
 – Which solutions foster innovation?
 – Are there other solutions we should consider?