Open Spectrum: Economic & Policy

- Future is shared spectrum
- Business/Policy Models for sharing spectrum
- Current trajectory of policy reform
- Research questions/issues
- “Managing shared access to a spectrum commons”
Future is shared spectrum: decoupling of spectrum frequencies from infrastructure investment & applications

<table>
<thead>
<tr>
<th>Technology (Capabilities)</th>
<th>Smart radio systems, spread spectrum, transition to broadband platform architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency agility, expanded capacity for sharing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue (Customer experience)</th>
<th>Heterogeneous networks (3G/WiFi, wireless/wired, global roaming)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/7 availability, simplicity of use, seemless mobility</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costs (Network provisioning)</th>
<th>Bursty traffic, multimedia services, fat-tailed usage profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower costs, take advantage intermodal competition</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy (Spectrum reform)</th>
<th>Transition to expanded flexible market-based licensing and unlicensed spectrum mgmt regimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduced artificial scarcity due to legacy regulations</td>
<td></td>
</tr>
</tbody>
</table>
Broadband Wireless Policy & Business Models

LICENCED

Service Provider Model
Network-centric
(Traditional Telecoms)

- Top Down
- Vertically Integrated
- Centralized Control

Key Features
- Mux users into min spectrum *(spectrum scarce)*
- Roaming, MVNOs
- Secondary markets??

UNLICENCED

End-user Equipment Model
Edge-centric
(Internet vision)

- Bottom Up
- Less Vertically Integrated
- Distributed Control

Key Features
- Open access: viral adoption and rapid diffusion *(spectrum not scarce)*
- “Commons” shared use rights
- Etiquettes/Rules

©Lehr, 2005
Trajectory of reform: from regulation \(\rightarrow\) markets

- From Command & Control => Liberalized, tradable, exclusive licenses
- Unlicensed for low-power, low-range uses (<100m)
 - Limited allocation below 3Ghz
 - Underlays and Overlays (??), Dedicated @ 5GHz

#1: Need exclusive licenses (and secondary markets) to manage when scarce (if not scarce, then unlicensed best...)

#2: Unlicensed (decentralized, commons) suitable only for managing short distance, low cost of congestion
Research Questions: Is this right policy?

- Allocation of spectrum between “licensed” & “unlicensed”
 - *Future* “opportunity” cost of spectrum?
 - Architectures of (wireless) BB access networks?
 - International harmonization for scale/scope economies means delay costly

- Efficient design of secondary markets
 - Dynamic spectrum allocation markets (who controls?)

- Transition issues: spectrum clearing and allocation (auctions?)

- Unlicensed secondary use rights
 - *Underlays*: power limits and UWB development? Impact of underlays on licensed spectrum innovation?
 - *Overlays*: cognitive radio? Interruptible services

- Etiquettes/protocols for managing open spectrum

All issues require mix of technical, business, and policy analysis.
- Complex stakeholder interests (NIMBY, windfall profits, etc.)
- Uncertain technology & “future proof” policy

©Lehr, 2005
“Managing Shared Access to a Spectrum Commons”

- “Open” does not mean *no* regulation
 - But hopefully, minimal Free? Maybe not, but certainly low cost. Avoid usage fees.
 - Any user? No, only those that conform to “rules.” Could be private commons (e.g., mobile providers share 3G spectrum cooperatively).

- Criteria to evaluate:
 - Technical: avoid unnecessary interference when congestion rare.
 - Economic: promote innovation, invest, competitive strive or technical neutrality while avoiding “Tragedy of Commons”.
 - Political: How future-proof? (Reversibility) Enforcement? (Liability)

- Key technical rules
 - (1) Power restrictions (probably higher than consistent with underlay)
 - (2) Signaling capability (common channel signaling for identity, use, power, location)
 - (3) Contention/allocation mechanism (ERC, preemption)
 - (4) Enforcement (reliably verifiable conformance testing)
 - (5) Reversibility (term limits)

Joint with Jon Crowcroft for www.IEEE-Dyspan.com, Baltimore, MD, Nov05