QoS in the home

Ashok Narayanan
Cisco Systems

MIT Communications Futures Program
Interconnections Working Group

October 21, 2008
Agenda

- The problem
- What applications need QoS?
- Current state of in-home QoS
- Further out
The problem

- How does QoS/prioritization by an ISP interact with QoS/prioritization within the home?

Let’s answer this question in these steps:
- Why do users want QoS in the home?
- What does QoS in the home look like?
- How would this interact with provider QoS?
What home traffic needs QoS?

- **VoIP**
 - SP-provided (Comcast), Over-the-top managed (Vonage), OTT ad-hoc (Skype)
 - User cares about quality, SP may or may not
 - Small BW requirement, easy solutions apply

- **Videoconferencing**
 - Low-end (Skype) has no real quality requirements
 - High-end needs something better
What home traffic needs QoS?

- Streaming video in home
 - In home (NAS/PC to Digital Media Adapte r), OTT managed/ad-hoc (Apple TV, Netflix/Roku)
 - User cares about quality, SP doesn’t

- Streaming video from service provider
 - Converged access link and/or home network for TV and data
 - SP cares about quality
Flow categorization

- **In-home**
 - Source & sink in home network
 - e.g. video playout from NAS/PC to DMA

- **External, incoming**
 - Source outside the home, sink inside
 - e.g. VoD (either SP-run or Vudu/Netflix)

- **External, in+out**
 - Bidirectional flow in & out of home
 - E.g. videoconferencing or VoIP
Access link upstream QoS

- Diffserv for outgoing traffic on the router
- Prioritize voice over data
 - Linksys/Vonage PAP2 or WRT54G-P2
 - Plug-and-play, but only for that application
- Sophisticated bandwidth management
 - Queuing/shaping on Residential Gateway (RG)
 - Handles multiple applications
 - Needs configuration
Access link upstream QoS

- Problem: RG must know upstream bandwidth
 - Bandwidth a property of Access Network Terminating device
 - Hard to determine exactly *a priori*
 - DSL: line can retrain
 - Cable: upstream bandwidth shared with other customers
 - What to do if bandwidth changes? 😞
 - Solution: Integrated router/access device
 - Who administrates QoS policy on this device?
 - Solution: Export bandwidth from ANT to RG (and anybody else)
 - What protocol? DSL modems use TR-69, others?

- Other issues
 - *Unprovisioned* local QoS can give *fairness* to applications
 - *Provisioned* QoS can be hard to manage
 - *Auto-provisioning* QoS (e.g. via signalling proxies) very complex
In-home QoS

- In the home today: no real QoS
- Options at Layer 3
 - Diffserv via queueing/shaping
- Options at Layer 2
 - Wired Ethernet (100Mb/s or 1 Gb/s)
 - MoCA (coax cable)
 - HPNA (powerline)
 - WiFi (802.11b/g/n)
- WiFi is the real bear!!
 - Convenient, so people want to use it
 - Complicated to get good QoS
- Must be idiot-proof
Standards efforts – UPnP QoS

- UPnP QoS specified by UPnP Forum
 - Support QoS requests using XML/SOAP
 - V2.0: Prioritized QoS
 - V3.0 (currently draft): Parameterized QoS
- Source/sink devices (control points) request QoS services for flows
- QoS Manager (QM) services requests for QoS by
 - Determining the topology of the network
 - Identifying the nodes between the source and sink devices
 - Issuing QoS requests to each of the devices
- QoS Policy Holder (QPH) advises QM on relative priority of request and traffic
 - Indicates relative reservation priority, and marking for endpoint to use
- Home network devices export QoS Device profile
 - Implements QoS requests by prioritizing traffic with signalled marking
Standards efforts - other

- Digital Living Network Alliance (DLNA)
 - Certification program for manufacturers
 - Built around UPnP QoS 2.0
 - Describes a more specific, “conformable” standard
- CableLabs Reserved Service Domain (RSD)
 - Built around UPnP QoS 3.0
 - Specific guidelines & rules for implementation
 - Supports QoS 2.0-style “Prioritized Service Domain”
- Digital Video Broadcasting project (DVB)
 - Home Networking (DVB-HN) QoS
 - Based around DLNA guidelines, prioritized QoS
Other in-home QoS efforts

- **Windows Rally**
 - Microsoft’s “successor” to UPnP
 - Built around Web Services model
 - Proposed to OASIS for standardization

- **Vendor QoS solutions**
 - e.g. Linksys/Cisco Entertainment Grade Home Network (EGHN)
 - UPnP QoS 2.0 + enhancements

- **Provisioning software**
 - e.g. “Network Magic” from Pure Networks/Cisco
 - Cisco Home Network Administration Protocol (HNAP), built around XML+SOAP services
 - Device administration/configuration
 - Bandwidth monitoring
Access link downstream QoS

- Interesting for SP video delivery
- DiffServ for packet marking
- Admission control?
 - In-home: clients co-operate and divide up fixed bandwidth pool
 - Sender-driven: Admission control within the provider network, including the access link
 - Receiver-driven: In-home device signals access link bandwidth/flow requirement to network
Summary

- In-home QoS is coming!
- Benefits:
 - It enables some useful applications
 - Converged home network for data, voice, video
 - Interesting user video applications
 - WiFi especially is interesting here
 - It has value for service providers too
- Challenges
 - Figuring out what to build!
 - Getting heterogeneous equipment to interoperate
 - Making sophisticated features easy to use
 - Building these into lightweight equipment
 - Figuring out how to do QoS across WiFi sensibly