A Contract and Balancing Mechanism for Sharing Capacity in a Communication Network

Richard Steinberg University of Cambridge

Joint with

Eddie Anderson, AGSM

Frank Kelly, University of Cambridge

July 2005

The owner of a communication network wishes to sell bandwidth to users

 Bandwidth: Amount of data that can be transmitted per unit time via fibre optic cables (specified in *bits per second*, bps)

- Bandwidth: Amount of data that can be transmitted per unit time via fibre optic cables (specified in *bits per second*, bps)
- Users are those who require a dedicated network

- Bandwidth: Amount of data that can be transmitted per unit time via fibre optic cables (specified in *bits per second*, bps)
- Users are those who require a dedicated network
 - small telecoms companies

- Bandwidth: Amount of data that can be transmitted per unit time via fibre optic cables (specified in *bits per second*, bps)
- Users are those who require a dedicated network
 - small telecoms companies
 - business that host network applications (e.g., Blockbuster Entertainment on demand)

- Bandwidth: Amount of data that can be transmitted per unit time via fibre optic cables (specified in *bits per second*, bps)
- Users are those who require a dedicated network
 - small telecoms companies
 - business that host network applications (e.g., Blockbuster Entertainment on demand)
 - other (e.g., Merrill Lynch, for one-off video broadcast for its analysts)

Customers can either:

Customers can either:

(1) Buy capacity for only their regular needs

Customers can either:

(1) Buy capacity for only their regular needs

- But then they'll have problems when usage spikes

Customers can either:

(1) Buy capacity for only their regular needs

- But then they'll have problems when usage spikes

(2) Buy sufficient capacity to serve maximum demand

Customers can either:

(1) Buy capacity for only their regular needs

- But then they'll have problems when usage spikes

(2) Buy sufficient capacity to serve maximum demand

- But then they waste money on access they're not using

• Circuit-switched networks

- Circuit-switched networks
 - A specific path to destination is obtained for the message

Circuit-switched networks

- A specific path to destination is obtained for the message
- No other information travels along the lines involved

Circuit-switched networks

- A specific path to destination is obtained for the message
- No other information travels along the lines involved
- Example: the public telephone network

Circuit-switched networks

- A specific path to destination is obtained for the message
- No other information travels along the lines involved
- Example: the public telephone network

Packet-switched (IP) networks

Circuit-switched networks

- A specific path to destination is obtained for the message
- No other information travels along the lines involved
- Example: the public telephone network

Packet-switched (IP) networks

- Data is broken down into small units, called packets

Circuit-switched networks

- A specific path to destination is obtained for the message
- No other information travels along the lines involved
- Example: the public telephone network

Packet-switched (IP) networks

- Data is broken down into small units, called packets
- Packets individually routed & re-assembled at destination

Circuit-switched networks

- A specific path to destination is obtained for the message
- No other information travels along the lines involved
- Example: the public telephone network

Packet-switched (IP) networks

- Data is broken down into small units, called packets
- Packets individually routed & re-assembled at destination

Our focus will be on packet-switched networks.

• IP networks have congestion control mechanisms to allow users to share capacity...

- IP networks have congestion control mechanisms to allow users to share capacity...
 - ... and thus absorb random fluctuations in users' demands

- IP networks have congestion control mechanisms to allow users to share capacity...
 - ... and thus absorb random fluctuations in users' demands
- The rate at which a source sends packets to the destination is controlled by TCP

- IP networks have congestion control mechanisms to allow users to share capacity...
 - ... and thus absorb random fluctuations in users' demands
- The rate at which a source sends packets to the destination is controlled by TCP
 - ... implemented as software on computers on IP networks

- IP networks have congestion control mechanisms to allow users to share capacity...
 - ... and thus absorb random fluctuations in users' demands
- The rate at which a source sends packets to the destination is controlled by TCP
 - ... implemented as software on computers on IP networks
 - TCP shares bandwidth amongst flows

 Each time a packet arrives at the destination, an acknowledgement packet is sent back to the source

- Each time a packet arrives at the destination, an acknowledgement packet is sent back to the source
- When the destination becomes overloaded, one or more packets are lost

- Each time a packet arrives at the destination, an acknowledgement packet is sent back to the source
- When the destination becomes overloaded, one or more packets are lost
 - the source knows that the packet was lost because it failed to receive an acknowledgement packet

- Each time a packet arrives at the destination, an acknowledgement packet is sent back to the source
- When the destination becomes overloaded, one or more packets are lost
 - the source knows that the packet was lost because it failed to receive an acknowledgement packet
 - the source slows down

- Each time a packet arrives at the destination, an acknowledgement packet is sent back to the source
- When the destination becomes overloaded, one or more packets are lost
 - the source knows that the packet was lost because it failed to receive an acknowledgement packet
 - the source slows down
- TCP gradually increases the sending rate until it again receives an indication of congestion

- Each time a packet arrives at the destination, an acknowledgement packet is sent back to the source
- When the destination becomes overloaded, one or more packets are lost
 - the source knows that the packet was lost because it failed to receive an acknowledgement packet
 - the source slows down
- TCP gradually increases the sending rate until it again receives an indication of congestion
- In this way, TCP serves to discover and utilise whatever bandwidth is available and to share it amongst flows
• All packets have three parts

• All packets have three parts

- IP header

• All packets have three parts

- IP header
- TCP header

• All packets have three parts

- IP header
- TCP header
- data from "application layer"

• All packets have three parts

- IP header
- TCP header
- data from "application layer"

Complete packet

 	·····					· · · · · · · · ·	······											
 IP header					TCF	 data from application layer												
 		· · · · ·	·			· ·	· · · · · ·						-					

• All packets have three parts

- IP header
- TCP header
- data from "application layer"

Complete packet

_														 					
I																			
I			أداد حذك	- 1		TOP	7 6 -	والمراجع المراجع	- 1			يقدادن	سمک نے	 الحضم	يد القد م	يسا خ	ain a		
ł			1 - 3	· · · · · · · · · · · · · · · · · · ·				· ● _	·	••••••			8 M E			19 H B B	18 F · · · ·		
I				•										 					
I		÷			- C	1.0	1.0		-		- C	- C	10 C	 		1.00	1.0	1.0	1.1
1	1.1						1.0	1.0					1.0			1.0	1.0	1.0	

 There is currently one bit in IP header reserved for some "future use"

• All packets have three parts

- IP header
- TCP header
- data from "application layer"

Complete packet

	IP	hea	der		т	Ph	ead		 th .	ta fi	mm	anni	Icati	on la	WAL		
												abb.					
1.0	1.0	1.0	1.0	1.1		1.0	1.0	 1.0			1.0	1.0	1.0	1.0		1.0	

 There is currently one bit in IP header reserved for some "future use" (can be set to 0 or 1)

Two problems with dropped packets

Two problems with dropped packets

(1) Wasteful of system resources

Two problems with dropped packets

- (1) Wasteful of system resources
 - Dropped packets need to be re-sent

- Two problems with dropped packets
- (1) Wasteful of system resources
 - Dropped packets need to be re-sent
- (2) The congestion signal is delayed

- Two problems with dropped packets
- (1) Wasteful of system resources
 - Dropped packets need to be re-sent
- (2) The congestion signal is delayed
 - Until the point when packets begin to be dropped, users are unaware of imminent congestion problems

- Two problems with dropped packets
- (1) Wasteful of system resources
 - Dropped packets need to be re-sent
- (2) The congestion signal is delayed
 - Until the point when packets begin to be dropped, users are unaware of imminent congestion problems

A better way

Two problems with dropped packets

(1) Wasteful of system resources

- Dropped packets need to be re-sent

(2) The congestion signal is delayed

- Until the point when packets begin to be dropped, users are unaware of imminent congestion problems

A better way

There is a 'Proposed Standard' for congestion control...

 Packets encountering long queues can have that extra bit set to indicate congestion

- Packets encountering long queues can have that extra bit set to indicate congestion
- Users detecting ECN marks should respond by reducing transmission rates

- Packets encountering long queues can have that extra bit set to indicate congestion
- Users detecting ECN marks should respond by reducing transmission rates
- Thus, ECN marks are designed to be used to control congestion

- Packets encountering long queues can have that extra bit set to indicate congestion
- Users detecting ECN marks should respond by reducing transmission rates
- Thus, ECN marks are designed to be used to control congestion
- Our idea: ECN marks can be also used to control the supply of capacity

• Owner of link sells contracts for usage over a period

- Owner of link sells contracts for usage over a period
- At end of period, users participate in a balancing process

- Owner of link sells contracts for usage over a period
- At end of period, users participate in a balancing process
- Users make or receive payments based on:

- Owner of link sells contracts for usage over a period
- At end of period, users participate in a balancing process
- Users make or receive payments based on:
 - proportion of marks they received, compared with

- Owner of link sells contracts for usage over a period
- At end of period, users participate in a balancing process
- Users make or receive payments based on:
 - proportion of marks they received, compared with
 - capacity they had contracted for.

Example

• Two users contract for part of 300 Mbps line for month

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps
- Rates charged by the owner

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps
- Rates charged by the owner
 - contractual rate: *c* dollars per megabit

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps
- Rates charged by the owner
 - contractual rate: c dollars per megabit
 - balancing charge: ъ dollars per mark

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps
- Rates charged by the owner
 - contractual rate: c dollars per megabit
 - balancing charge: b dollars per mark
- At beginning of the month, owner receives

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps
- Rates charged by the owner
 - contractual rate: c dollars per megabit
 - balancing charge: b dollars per mark
- At beginning of the month, owner receives
 100*c* dollars from User A
"Contract and Balancing Mechanism" (CBM)

Example

- Two users contract for part of 300 Mbps line for month
 - User A contracts for 100 Mbps
 - User B contracts for 200 Mbps
- Rates charged by the owner
 - contractual rate: c dollars per megabit
 - balancing charge: b dollars per mark
- At beginning of the month, owner receives
 100*c* dollars from User A
 200*c* dollars from User B

• Number of marks received by each user is recorded:

- Number of marks received by each user is recorded:
 - Z_A = number of marks received by User A

- Number of marks received by each user is recorded:
 - Z_A = number of marks received by User A
 - Z_B = number of marks received by User B

 If User A received exactly 1/3 the total marks, then no further payments are made

- If User A received exactly 1/3 the total marks, then no further payments are made
- If User A received more than 1/3 the total marks, then A will pay B the balancing charge times the excess:

- If User A received exactly 1/3 the total marks, then no further payments are made
- If User A received more than 1/3 the total marks, then A will pay B the balancing charge times the excess:

 $b [Z_A - d (Z_A + Z_B)]$

- If User A received exactly 1/3 the total marks, then no further payments are made
- If User A received more than 1/3 the total marks, then A will pay B the balancing charge times the excess:

$$b[Z_A - d(Z_A + Z_B)]$$

 If User A received less than 1/3 the total marks, then A will <u>receive</u> from B the above amount.

• Recall the basic principle of ECN marking:

• Recall the basic principle of ECN marking:

Packets encountering long queues have a bit set to indicate congestion

• Recall the basic principle of ECN marking:

Packets encountering long queues have a bit set to indicate congestion

 We haven't discussed the point at which a queue is considered to be `long'

• Recall the basic principle of ECN marking:

Packets encountering long queues have a bit set to indicate congestion

- We haven't discussed the point at which a queue is considered to be `long'
- However, this is not very significant, as we only need to know the proportion of ECN marks received

Theorem: Suppose the users can each predict their own usage over the period.

Theorem: Suppose the users can each predict their own usage over the period.

Then a user's optimal contract quantity is a weighted average of his anticipated usage over the period.

Theorem: Suppose the users can each predict their own usage over the period.

Then a user's optimal contract quantity is a weighted average of his anticipated usage over the period.

Corollary: Users who are:

Theorem: Suppose the users can each predict their own usage over the period.

Then a user's optimal contract quantity is a weighted average of his anticipated usage over the period.

Corollary: Users who are:

price insensitive, or

Theorem: Suppose the users can each predict their own usage over the period.

Then a user's optimal contract quantity is a weighted average of his anticipated usage over the period.

Corollary: Users who are:

- price insensitive, or
- have a constant usage over time

Theorem: Suppose the users can each predict their own usage over the period.

Then a user's optimal contract quantity is a weighted average of his anticipated usage over the period.

Corollary: Users who are:

- price insensitive, or
- have a constant usage over time

should contract for precisely their anticipated usage.

Two benefits of the scheme

 If a user has constant bandwidth requirements, i.e., never delivers more than his contracted capacity...

- If a user has constant bandwidth requirements, i.e., never delivers more than his contracted capacity...
 - Then he will only receive--never be required to make-payments in the balancing process.

- If a user has constant bandwidth requirements, i.e., never delivers more than his contracted capacity...
 - Then he will only receive--never be required to make-payments in the balancing process.
- If capacity of a link is fully contracted, the network owner receives no additional payments from process.

- If a user has constant bandwidth requirements, i.e., never delivers more than his contracted capacity...
 - Then he will only receive--never be required to make-payments in the balancing process.
- If capacity of a link is fully contracted, the network owner receives no additional payments from process.
 - Thus, he is indifferent to short term behaviour of network.

- If a user has constant bandwidth requirements, i.e., never delivers more than his contracted capacity...
 - Then he will only receive--never be required to make-payments in the balancing process.
- If capacity of a link is fully contracted, the network owner receives no additional payments from process.
 - Thus, he is indifferent to short term behaviour of network.

- If a user has constant bandwidth requirements, i.e., never delivers more than his contracted capacity...
 - Then he will only receive--never be required to make-payments in the balancing process.
- If capacity of a link is fully contracted, the network owner receives no additional payments from process.
 - Thus, he is indifferent to short term behaviour of network.